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NGS SEQUENCING 



HOW DID WE GET HERE 



Understanding community dynamics  

¨  Who is there? 
¨  What are they doing?  
¨  How are they doing it? 
 

Kim Lewis, 2010 



Gene / Genome Sequencing 

¨  Collect samples  
¨  Extract DNA 
¨  Sequence DNA 
¨  “Analyze” DNA to identify its content and origin 

Taxonomy  
(e.g., pathogenic E. Coli) 
Function  
(e.g., degrades cellulose) 



Cost of Sequencing 

Stein, Genome Biology, 2010  

E. Coli genome 4,500,000 bp ($4.5M, 1992) 
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Rapidly decreasing costs with 
NGS Sequencing 

Stein, Genome Biology, 2010  

Next Generation Sequencing 
4,500,000 bp (E. Coli, $200, presently) 
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Effects of low cost sequencing… 

 First free-living bacterium sequenced  for 
billions of dollars and years of analysis 

Personal genome can be 
mapped in a few days and 
hundreds to few thousand 
dollars 



The experimental continuum 

Single Isolate  
Pure Culture 

Enrichment 
Mixed Cultures 

Natural systems 



The era of big data in biology 

Stein, Genome Biology, 2010  

Computational Hardware 
(doubling time 14 months)  
 

Sanger Sequencing 
(doubling time 19 months)  
 

NGS (Shotgun) Sequencing 
(doubling time 5 months)  
 

1990    1992    1994    1996    1998    2000    2003    2004    2006    2008    2010    2012 
      Year  

0 

1 

10 

100 

1,000 

10,000 

100,000 

1,000,000 

D
isk

 S
to

ra
ge

, M
b/

$ 

0.1 

1 

10 

100 

1,000 

10,000 

100,000 

1,000,000 

D
N

A
 Sequencing, M

bp per $ 

10,000,000 

100,000,000 

0.1 

1 

10 

100 

1,000 

10,000 

100,000 

1,000,000 

10,000,000 

100,000,000 



Postdoc experience with data 

2003-2008 Cumulative sequencing in PhD = 2000 bp 
2008-2009 Postdoc Year 1 = 50 Gbp 
2009-2010 Postdoc Year 2 = 450 Gbp 
2014  = 50 Tbp 
2015  = 500 Tbp budgeted 





THE DIRT ON SOIL 

Biodiversity in the dark, Wall et al., Nature Geoscience, 2010 Jeremy Burgress  

MAGNIFICENT BIODIVERSITY 



THE DIRT ON SOIL 

SPATIAL HETEROGENEITY 

http://www.fao.org/ www.cnr.uidaho.edu 



THE DIRT ON SOIL 

DYNAMIC 



THE DIRT ON SOIL 

INTERACTIONS:  BIOTIC, ABIOTIC, ABOVE, BELOW, SCALES 

Philippot, 2013, Nature Reviews Microbiology 



I.  Methods to tackle metagenomic datasets 
 Computational 
 Experimental 

 

I.  Bottlenecks for microbiologists 



Tackling Soil Biodiversity 

Source:  Chuck Haney 

C. Titus Brown, James Tiedje, Qingpeng Zhang, Jason Pell (MSU) 
Janet Jansson, Susannah Tringe (JGI) 



A Slight Digression:  Decisions for the new microbial 
ecologist 



Getting the most 
out of your data Complex 

Samples 

16S rRNA amplicon 
sequencing 

Pros:  
1) Commonly used 

approach 
2) Deep 

characterization 
Cons:  
1) Limited 

knowledge 
2) Resolution 

remains low 

ID, Abundance, Function 

Patrick Chain 



Cons:  
1) Massive data (short + with errors) 
2) Lack of specificity due to FPs from genomic redundancy 
3) Difficult to detect novel genomes – must infer 

 

Getting the most 
out of your data Complex 

Samples 

16S rRNA amplicon 
sequencing 

  Shotgun 
sequencing 

Pros:  
1)  Commonly used approach 
2)  Deep characterization 
Cons:  
1)  Limited knowledge 
2)  Resolution remains low 

Assembly based  
Read-based / 

Mapping Methods 

Pros: 
1)  Large contigs 
2)  Positional Information 
3)  Most direct method to 

identify novel orgs/genes 
Cons: 
1)  Computational resource 

intensive 
2)  Assembling difficulties 

•  Sequencing error 
•  genomic redundancy 

- chimeras 

Pros:  
1) Massive data 
2)  Identity and 

abundance 
answered 
simultaneously 

3)  Look at all 
data** 

 

ID, Abundance, Function 

Patrick Chain 

Cons:  
1) Massive data (short + with errors) 
2)  Lack of specificity due to FPs from genomic 

redundancy 
3) Difficult to detect novel genomes – must infer 
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Getting the most 
out of your data Complex 

Samples 

16S rRNA amplicon 
sequencing 

  Shotgun 
sequencing 

Pros:  
1)  Commonly used approach 
2)  Deep characterization 
Cons:  
1)  Limited knowledge 
2)  Resolution remains low 

Assembly based  
Read-based / 

Mapping Methods 

Pros: 
1)  Large contigs 
2)  Positional Information 
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identify novel orgs/genes 
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1)  Computational resource 

intensive 
2)  Assembling difficulties 

•  Sequencing error 
•  genomic redundancy 

- chimeras 

Pros:  
1) Massive data 
2)  Identity and 

abundance 
answered 
simultaneously 

3)  Look at all 
data** 

 

ID, Abundance, Function 

Patrick Chain 

Cons:  
1) Massive data (short + with errors) 
2)  Lack of specificity due to FPs from genomic 

redundancy 
3) Difficult to detect novel genomes – must infer 

The answer is always “it depends”. 



Example #1:  Data compression 

http://siliconangle.com/files/2010/09/image_thumb69.png 



de novo assembly 

v Compresses dataset size significantly  
v Improved data quality (longer sequences, gene order) 
v Reference not necessary (novelty) 
 
 

Raw sequencing data (“reads”) Computational algorithms Informative genes / genomes 



Metagenome assembly…a scaling 
problem. 



Shotgun sequencing and de novo 
assembly 

It was the Gest of times, it was the wor 
, it was the worst of timZs, it was the  
isdom, it was the age of foolisXness 
, it was the worVt of times, it was the  

mes, it was Ahe age of wisdom, it was th 
It was the best of times, it Gas the wor 
mes, it was the age of witdom, it was th 

isdom, it was tIe age of foolishness 
 
 

It was the best of times, it was the worst of times, it was the age of 
wisdom, it was the age of foolishness 

 



Practical Challenges – Intensive 
computing 

Howe et al, 2014, PNAS 

Months of 
“computer 
crunching” on a 
super computer 



Practical Challenges – Intensive 
computing 

Howe et al, 2014, PNAS 

Months of 
“computer 
crunching” on a 
super computer 

 
Assembly of 300 Gbp (70,000 
genomes worth) can be done with 
any assembly program in less than 
14 GB RAM and less than 24 hours. 

50 Gbp = 10,000 genomes 



Natural community characteristics 

u  Diverse 

è Many organisms 
 (genomes) 



Natural community characteristics 

u  Diverse 

è Many organisms 
 (genomes) 

u  Variable abundance 
è Most abundant organisms, sampled 

more often  
è Assembly requires a minimum amount 

of sampling 
è More sequencing, more errors 

 
Sample 1x 
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Natural community characteristics 

u  Diverse 

è Many organisms 
 (genomes) 

u  Variable abundance 
è Most abundant organisms, sampled 

more often  
è Assembly requires a minimum amount 

of sampling 
è More sequencing, more errors 

 
Sample 1x Sample 10x 

Overkill 



Digital normalization 
True sequence (unknown)

Reads
(randomly sequenced)

Brown et al., 2012, arXiv 
Howe et al., 2014, PNAS 
Zhang et al., 2014, PLOS One 
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Digital normalization 
True sequence (unknown)

Reads
(randomly sequenced)
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If next read is from a high
coverage region - discard
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Digital normalization 
True sequence (unknown)

Reads
(randomly sequenced)

X
X

X
X

X
X

X
X

X

X
X

X

X
X

X
X

X

X

X
X

X

X
X

X
Redundant reads

(not needed for assembly)

Brown et al., 2012, arXiv 
Howe et al., 2014, PNAS 
Zhang et al., 2014, PLOS One 

v  Scales datasets for assembly up to 95% - same assembly 
outputs. 

v Genomes, mRNA-seq, metagenomes (soils, gut, water) 



Tackling Soil Biodiversity 

Source:  Chuck Haney 

C. Titus Brown, James Tiedje, Qingpeng Zhang, Jason Pell (MSU) 
Janet Jansson, Susannah Tringe (JGI) 



The reality?   



More like… 

Source:  Chuck Haney Howe et. al, 2014, PNAS 



The Future 

¨  More data, more samples, better references 
¨  Expense will be in sampling – not sequencing or 

even data analysis 
¨  All biologists will need to know how to use a pipette 

and write computer programs 
¨  Large-scale, collaborative projects rather than 

single PI efforts 


